Cycles of length 2 modulo 3 in graphs
نویسنده
چکیده
We prove a conjecture of Saito that if a graph G with ≥ 3 has no cycle of length 1 (mod 3), then G has an induced subgraph which is isomorphic to the Petersen graph. The above result strengthened the result by Dean et al. that every 2-connected graph with ≥ 3 has a (1 mod 3)-cycle if G is not isomorphic to the Petersen graph. ? 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
Cycles of length 0 modulo 4 in graphs
Dean, N., L. Lesniak and A. Saito, Cycles of length Omodulo4 in graphs, Discrete Mathematics 121 (1993) 37-49. In several papers a variety of questions have been raised concerning the existence of cycles of length Omod k in graphs. For the case k=4, we answer three of these questions by showing that a graph G contains such a cycle provided it has any of the following three properties: (1) G has...
متن کاملHamiltonian cycles in cubic Cayley graphs: the 〈2,4k,3〉 case
It was proved by Glover and Marušič (J. Eur. Math. Soc. 9:775–787, 2007), that cubic Cayley graphs arising from groups G = 〈a, x | a2 = x = (ax)3 = 1, . . .〉 having a (2, s,3)-presentation, that is, from groups generated by an involution a and an element x of order s such that their product ax has order 3, have a Hamiltonian cycle when |G| (and thus also s) is congruent to 2 modulo 4, and have ...
متن کاملOn Arithmetic Progressions Of Cycle Lengths In Graphs
A recently posed question of Häggkvist and Scott’s asked whether or not there exists a constant c such that if G is a graph of minimum degree ck then G contains cycles of k consecutive even lengths. In this paper we answer the question by proving that for k ≥ 2, a bipartite graph of average degree at least 4k and girth g contains cycles of (g/2 − 1)k consecutive even lengths. We also obtain a s...
متن کاملTheorem (in any field of Characteristic 2):
In Graph Theory a number of results were devoted to studying the computational complexity of the number modulo 2 of a graph’s edge set decompositions of various kinds, first of all including its Hamiltonian decompositions, as well as the number modulo 2 of, say, Hamiltonian cycles/paths etc. While the problems of finding a Hamiltonian decomposition and Hamiltonian cycle are NP-complete, countin...
متن کاملOn list vertex 2-arboricity of toroidal graphs without cycles of specific length
The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph. A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$, one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 113 شماره
صفحات -
تاریخ انتشار 1992